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ABSTRACT 

 

Purpose: Recent meta-analyses indicate that sprint interval training (SIT) improves 

cardiorespiratory fitness (  O2max), but the effects of various training parameters on the 

magnitude of the improvement remain unknown. The present meta-analysis examined the 

modify n       t o  t   num  r o  spr nt r p t t ons  n       s ss on on  mprov m nts  n 

   2max. Methods: The databases PubMed and Web of Science were searched for original 

studies that have  x m n   pr -  n  post-tr  n n     2m x  n   ults  ollow n  ≥2 w  ks of 

training consisting of repeated (≥2) Wingate-type cycle sprints, published up to 1 May 2016. 

 rt  l s w r   x lu       t  y w r  not  n  n l s    nvolv   p t  nts   t l t s  or p rt   p nts 

w t    m  n   s l n     2max of >55 mL·kg
-1

·min
-1

 or a mean age <18 years, and if a SIT trial 

was combined with another intervention or used intervals shorter than 10 s. A total of 38 SIT 

trials from 34 studies were included in the meta-analysis. Probabilistic magnitude-based 

inferences were made to interpret the outcome of the analysis. Results: The meta-analysis 

revealed a likely large effect of a typical SIT intervention on    2max (mean ± 90 CL %: 7.8% ± 

4.0%) with a possibly small modifying effect of the maximum number of sprint repetitions in a 

training session (-1.2 ± 0.8     r  s  p r 2     t on l spr nt r p t t ons)   p rt  rom poss  ly 

sm ll      ts o    s l n     2max and age, all other modifying effects were unclear or trivial. 

Conclusion:     on lu   t  t t    mprov m nt  n    2max with SIT is not attenuated with 

fewer sprint repetitions, and possibly even enhanced. This means that SIT protocols can be made 

more time-efficient, which may help SIT to be developed into a viable strategy to impact public 

health.  

 

Key words: systematic review; cardiorespiratory fitness; aerobic capacity; sprint interval 

training   
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INTRODUCTION 

 

The global increase in prevalence of noncommunicable diseases over the past decades (33) can 

be attributed, at least in part, to the low levels of physical activity undertaken by the majority of 

the general population (16). In light of this, a key aim of public health organisations is to 

increase population physical activity levels (20). Of the health markers that can be improved by 

physical activity, maximal aerobic capacity (  O2max) is consistently shown to be the strongest 

prognostic marker for future cardiovascular health and premature death in cross-sectional studies 

(36, 54).  urt  rmor   lon  tu  n l stu   s   monstr t  t  t  mprov m nts  n    2max are 

associated with substantial reductions in all-cause and cardiovascular mortality during follow-up 

(9, 41).  

 

Over the past two decades, relatively high volumes of moderate-intensity aerobic exercise (total 

time commitment ≥150 m n p r w  k) have consistently been recommended for improving 

health markers (20). However, uptake of and adherence to these recommendations remains low 

in the general population (25), with lack of time identified as one of the main perceived barriers 

to becoming and remaining physically active (37, 39, 68). Therefore, the seminal finding by 

Burgomaster et al. (12) that a training protocol consisting of repeated brief ‘ ll-out’ cycle sprints 

(i.e. Wingate sprints) is associated with aerobic adaptations, has led to substantial interest in the 

use of (sub)maximal high-intensity interval training (HIIT) and supramaximal sprint interval 

training (SIT) as time-efficient alternative/adjunct exercise strategies for improving    2max 

(21). The most commonly studied SIT protocol consists of 4-7 repeated 30-s Wingate sprints, 

thus resulting in less than 4 minutes of high-intensity exercise per session (72). Over the past few 

years, s v r l m t - n lys s   v  r port   t          y o       n  n r  s n     2max (24, 51, 62, 

72). These have concluded that in healthy individuals, SIT improves    2max to a similar (24) or 
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greater extent (51) than traditional aerobic training, with greater bene  ts  or  n  v  u ls w t  

low r pr -tr  n n     2max (51, 72).  

 

 lt ou   t  s    n  n s prov    stron  support  or t        t v n ss o       n  mprov n  

   2max, surprisingly few efforts have been made to identify ‘opt m l’     proto ols       

proto ols w     w ll   t  r prov    t    r  t st  n r  s   n    2max, or a set increase with the 

lowest total training volume or time commitment. Weston et al. (72) reported a likely small 

effect of increasing the intervention duration and a possibly moderate effect of increasing the 

work-to-rest ratio, but no studies have meta-analysed or directly investigated the potential effects 

of the number of sprint repetitions in a SIT session. This parameter is particularly important as it 

has a large influence on the total duration of a training session, as well as the level of fatigue (42) 

and affective responses (19) experienced by the participant, thus influencing the likelihood of 

individuals taking up and adhering to a specific SIT intervention (26). As the main aim of 

investigating SIT protocols is generally to identify a time-efficient alternative to aerobic 

exercise, there is a need to identify the effect of this training parameter on the associated increase 

in    2max. Recent evidence suggests that the positive effects of     on    2max can be attained 

with fewer sprints (22, 23, 34, 48), and therefore the aim of the present study was to perform a 

meta-analysis to provide estimates of the modifying effect of the number of sprint repetitions in 

SIT protocols on the increase in    2max in untrained adult participants following training.  

 

METHODS 

 

Literature Search Criteria and Study Selection 

This study was undertaken in accordance with the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) statement guidelines (52). We aimed to identify all 

ACCEPTED



Copyright © 2016 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

 
 

studies that have examined pre- and post-training    2max following a period of at least 2 weeks 

of training consisting of repeated (≥2) ‘ ll-out’ Wingate cycle sprints or modifications thereof 

(e.g. studies using 10-s, 15-s, or 20-s ‘ ll-out’ spr nts  nst    o  30-s Wingate sprints). For this 

purpose, the electronic databases PubMed and Web of Science were searched for relevant 

available records up to 1 May 2016, using the 28 possible combinations of the independent 

v r   l  s  r   t rms ‘  n  t ’  ‘ ll-out’  ‘spr nt’   n  ‘ nt rv l tr  n n ’   n  t     p n  nt 

v r   l  s  r   t rms ‘  tn ss’  ‘  ro      p   ty’  ‘  ro    pow r’  ‘   2max’  ‘   2peak’  

‘oxy  n upt k ’   n  ‘oxy  n  onsumpt on’  Relevant studies cited in recent meta-analyses were 

also used (24, 51, 62, 72), as well as our own recent work (50). The following articles were 

excluded: 1) review articles / commentaries, 2) articles not written in English, 3) studies 

concerning patients, athletes, or participants w t    m  n   s l n     2max of >55 mL·kg
-1

·min
-1

 

or a mean age <18 years, 4) animal studies, 5) study-trials in which SIT was combined with 

another intervention; and 6) SIT studies using non-cycling exercise, intervals shorter than 10 s, 

or int rv ls t  t w r  not ‘ ll-out’. Two authors (NBJV and RSM) independently conducted the 

literature search and data extraction, and any discrepancies were resolved by consensus. The 

reviewers were not blinded to manuscript journals or authors. After removal of duplicate records, 

the titles and abstracts of all identified articles were screened for records that were clearly not 

relevant. These articles were omitted before assessing the full-text versions of the remaining 

articles for eligibility to be included in the meta-analysis. If more than one article reported data 

for the same experiment, duplicate data for these participants were only included once. The final 

dataset included the results of 38 trials from 34 studies (Figure 1).  

 

Data Extraction 

Full papers were  ss ss    or m  n   solut  pr -  n  post-tr  n n     2max.   solut     2max 

(L·min
-1

)
 
w s us   r t  r t  n r l t v     2max (mL·kg

-1
·min

-1
) as this provides an estimate of 
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true changes in the ability to take up and use oxygen, independent of possible concomitant 

changes in body mass.
 
  l t v     2max was used for t     v  stu   s  or w       solut  

   2max data were not available (8, 40, 46, 55, 65).  ny   t   or    2max obtained at 

intermediate time-points during the intervention were excluded. The corresponding authors of 

papers without the required data were contacted by email; authors from 23 studies were 

contacted (1, 2, 5, 6, 10-13, 22, 23, 27, 28, 30, 31, 34, 38, 47, 55, 59-61, 65, 67, 74) and we 

received raw data from 17 studies (5, 10-13, 22, 23, 27, 28, 30, 38, 47, 55, 59-61, 74). Graph 

digitizer software (DigitizeIt   r uns  w       rm ny) w s us   to o t  n t     t   rom on  

stu y  or w       solut  pr -  n  post-tr  n n     2max data were only available in a figure 

(67). For trials with a no-exercise control group, the effect entered into the meta-analysis was 

intervention minus control. Data for aerobic exercise comparator groups were not included in the 

meta-analysis. The effect of training was expressed as a percentage change-score.   r  nt    

     ts o      on    2max were converted to factors (= 1 + effect / 100), log transformed for the 

analysis, and then back transformed to percentages. Effects were weighted using percentage 

standard errors derived from exact p-values, or from estimated errors of measurement as 

recommended by Weston et al. (72). Under the assumption that studies with similar test 

protocols and subject characteristics would have similar typical errors of measurement, the 

typical errors from these studies were averaged (via the weighted mean variance) and assigned to 

the studies that did not report an exact p value (1, 2, 6, 34, 44, 65, 67). The SE was then 

calculated via the relationship between typical error and SE (69).   n lly    t   or t    ollow n  

pot nt  l mo  r tors w r   xtr  t    or      stu y  p rt   p nt    r  t r st  s (s x        o y 

m ss  n  x (   )    s l n     2max), training parameters (intervention duration, total number 

of training sessions, maximal number of sprint repetitions per training session, sprint duration, 

sprint/recovery ratio, sprint resistance), and study-type (controlled / uncontrolled; dummy 

variable).  
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Statistical Analysis 

To evaluate the extent of publication bias, a funnel plot of model residuals versus their 

corresponding standard errors was inspected for evidence of asymmetrical scatter (72). This 

approach takes into account any heterogeneity explained by the meta-regression, which is not 

accounted for in standard funnel plots of observed effects vs. their standard errors. No evidence 

of asymmetrical scatter was apparent (Figure 2).  

 

A mixed effects meta-r  r ss on mo  l w s  on u t   us n  t   ‘m t  or’ p  k     n   (v rs on 

3.2.4, R Foundation for Statistical Computing, Vienna, Austria) (70).     ov r ll      t o      

on    2max was evaluated using the mean values of the covariates. The modifying effects of 

covariates were evaluated as the      r n     tw  n l v ls (     m l    m l )  or nom n l 

v r   l s   or num r   v r   l s       ts w r   v lu t    s t      n    n    2max associated 

with a two standard deviation (SD) change in the predictor (i.e. a typically low vs. a typically 

high value (32)), or a practically relevant value (e.g. three additional SIT sessions would 

typically constitute an additional week of training). The random effects in the model specified a 

between-study SD, representing the typical difference in the true value of the effect in different 

study settings, plus a within-study random effect to account for within-study repeated 

measurements (a control treatment and/or more than one training treatment) (72). The SD was 

doubled before interpreting its magnitude with the scale used to interpret fixed effects (63), for 

the same reason that the magnitude of the effect of a linear covariate is evaluated with two SD of 

the covariate (32). We performed a sensitivity analysis to determine whether the inference 

relating to the modifying effect of maximum number of sprints was substantially altered when 

two potentially influential studies (with 12 and 15 maximum sprints, respectively (31, 61)) were 

removed from the analysis. 
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We used magnitude-based inferences to provide an interpretation of the real-world relevance of 

the outcomes. Uncertainty in effect estimates was expressed as ± 90% confidence limits, and as 

the likelihood that the true value was beneficial, trivial, or harmful in relation to threshold values 

for benefit (improved fitness) and harm (reduced fitness) (32).     ov r ll      t o      on 

   2max was interpreted as a clinical outcome, whereby an effect was deemed unclear if the 

chance that the true value was beneficial was >25%, with odds of benefit relative to odds of harm 

(odds ratio) of <66. Modifying effects were evaluated mechanistically and deemed unclear if the 

likelihood that the true value was beneficial and harmful were both >5%. Otherwise, the effect 

was deemed clear, and was qualified with a probabilistic term using the following scale: <0.5%, 

most unlikely; 0.5-5%, very unlikely; 5-25%, unlikely; 25-75%, possible; 75-95%, likely; 95-

99.5%, very likely; >99.5%, most likely. As robust anchors for the smallest wort w  l   l n   l 

 n  pr  t   l      ts r l t n  to    2max were not available, standardised effect thresholds of 0.2, 

0.6 and 1.2 SD were adopted for small, moderate and large effects, respectively (72).   r   t   

   r l t   to t    v r      tw  n-su    t v r  n  s  or   s l n     2max; these corresponded to 

magnitude thresholds of 1.0%, 2.9% and 5.8%.  

 

RESULTS 

 

Data available for the 34 studies and 38 trials included in the meta-analysis are shown in Table 1 

and Figure 3      m t - n lys s  n    t    n ov r ll l k ly l r        t o   n ‘ v r   ’     

proto ol on    2max (m  n    0           t on t    n r  s   n    2max: 7.8 ± 4.0%; Table 2). 

A possibly small effect was evident for the modifying effect of the maximum number of sprint 

repetitions in a training session (-1.2 ± 0.8% decrease per 2 additional sprint repetitions; Figure 

4a). The percentage chances that the modifying effect was negative, trivial or positive were 

calculated to be 62.7%, 37.3% and 0.0% respectively. There were possibly small effects o  
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  s l n     2max (-1.5 ± 1.9% decrease per 10 mL·kg
-1

·min
-1

 higher baseline   O2max; Figure 

4b) and age (-1.1 ± 1.2% decrease per 7 y increase; Figure 4c). All other modifying effects 

(intervention duration, number of sessions, sprint duration, recovery time, sprint resistance, BMI, 

sex, and study type) were unclear or trivial (Table 2). Unexplained variance between studies was 

2.2 ± 0.8% (likely moderate). The inference relating to the effect of maximum number of sprint 

repetitions was not altered when the two studies with the highest number of sprint repetitions 

(31, 61) were removed from the analysis (-1.0 ± 1.1%; possibly small decrease; chances that the 

modifying effect was negative, trivial or positive of 51.6%, 48.2% and 0.0% respectively).  

 

DISCUSSION 

 

The main aim of the present meta-analysis was to examine the modifying effect of the number of 

sprint repetitions in a SIT session on the increase in    2max following training. Using data from 

34 training studies and 418 participants we demonstrate that t    mprov m nt  n    2max with 

SIT is not attenuated with fewer sprint repetitions, and possibly even enhanced. Considering the 

low physical activity levels in the general population (25), and the fact that lack of time is 

consistently identified as one of the main perceived barriers to becoming and remaining 

physically active (37, 39, 68), this finding has implications for the design of practical SIT 

interventions for improving general health. SIT protocols have the potential to be the most time-

efficient interventions that are associated with improvements in key health markers, but due to 

the need for recovery intervals following sprints, this potential can only truly be achieved if the 

number of sprint repetitions is low. Therefore, our observation that reducing the number of sprint 

repetitions will not  tt nu t  t    n r  s   n    2max associated with SIT, and in fact may 

possibly improve the effect, is an important novel finding. 
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Based predominantly on the results of studies investigating the dose-response relationship 

between regular aerobic exercise and improvements in health markers, it has generally been 

accepted that at a given exercise intensity a greater volume of exercise training (in terms of 

training duration and frequency) is associated with greater improvements in    2max (20). For 

example, in a clinical trial comparing low or high-intensity aerobic training protocols with 

matched energy expenditure ( tu   s o      r  t     sk    u t on  nt rv nt on t rou       n   

 x r  s  (         )) t   m  n tu   o     n    n    2max was greater in the group exercising 

at a higher intensity (15). Although the volume of exercise used in HIIT and SIT protocols is 

generally reduced compared to aerobic exercise programmes (11, 45, 60), the principle of a dose-

response relationship has not been challenged in these studies directly; it is the interaction 

between training volume and intensity that is used to justify the lower volume. Thus, HIIT and 

SIT studies investigating the effects of protocols with a lower intensity or a shorter sprint 

duration tend to increase the number of sprint repetitions (43, 66). Apart from two studies that 

demonstrated that reducing sprint duration from 30 s to either 15 s (74) or 10 s (30) does not 

attenuate the improvement  n    2max with SIT, there have been no HIIT or SIT studies that 

have specifically investigated the dose-response relationship between the volume of high-

intensity exercise and health outcomes. Our meta- n lys s prov   s t     rst  v   n   t  t  t ‘ ll-

out’ supr m x m l  x r  s   nt ns t  s the generally accepted positive association between 

volume of training and magnitude of training adaptations does not hold true. Thus, research into 

the health benefits of SIT should increase the focus on protocols with fewer sprints.  

 

Due to the relatively low number of studies examining the effects of SIT protocols with fewer 

than six sprint repetitions, the present meta-analysis was not powerful enough to make 

conclusions on the optimal number of all-out sprint repetitions. Only two studies have 

investigated the effects of a SIT protocol incorporating just two sprints (48, 50). As one of these 
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used the largest sample size of all the studies included in the review (n=34 (50))  t   m  n 10  

 n r  s   n    2max observed with this protocol (termed reduced-exertion high-intensity interval 

training, REHIT) appears to be robust. The greatest improvement in absolute    2max (17%) 

was reported by     l ’s  roup (22), who modified the original R     proto ol to  n lu     

t  r  spr nt   ow v r  t   tot l  ur t on o  t  s  nt rv nt on w s 12 w  ks  w  r  s  t  n 

 nt rm    t  m  sur m nt-po nt   t r   w  ks t    n r  s   n    2max was 12%, very similar to 

the 10% and 14% improvements observed with the original REHIT protocol (48, 50).  lt ou   

 utur  stu   s s oul    t rm n  w  t  r t   m  n tu   o  t   r spons   or    2max is different 

between SIT protocols incorporating 2-4 sprints, the data presented in the present manuscript 

suggest that this difference will be small. If this is indeed the case, then a number of 

considerations support the use of the smallest number of sprints, i.e. the two sprints used in the 

REHIT protocol. Firstly, including a warm-up, recovery, and cool-down, this protocol has the 

potential to be the most time-efficient protocol. Furthermore, a drawback of the use of SIT as a 

public health intervention is the potential for high associated perceived exertion and negative 

affective responses (8, 21). In this light it is important to point out that the number of sprint 

repetitions has been shown to negatively affect both of these parameters (19, 42). Therefore, 

effective SIT protocols with fewer sprint repetitions will likely offer the best chance of sedentary 

target populations taking up and adhering to a SIT intervention for improving health (18). With 

this in mind, the available evidence suggests that two sprints can be recomm n     s      t v   t 

 mprov n  t    mport nt    lt  m rk r o     2max. It could be argued that considering the 

apparent l n  r  sso   t on   tw  n t   num  r o  spr nt r p t t ons  n   mprov m nt  n 

   2max (Figure 4a), a single sprint could be expected to produce similar improv m nts w t    

low r t m - omm tm nt   ow v r  w    v  r   ntly p r orm   t     rst stu y to  nv st   t  t   

     ts o    s n l  supr m x m l spr nt on    2max, and observed no significant increase 

compared to a no-exercise control condition in response to 4 weeks of training with a sample size 
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of n=15 (64). Further studies are required to confirm whether supr m x m l spr nts only  mprov  

   2max if they are repeated. Furthermore, in light of the fact that the majority of studies that 

have studied the effects of SIT protocols incorporating 2 or 3 sprint repetitions have used 20-s 

sprints rather than the more commonly used 30-s sprints (22, 23, 48, 50),  urt  r stu   s  r  

r qu r   to  nv st   t  t   s ort st spr nt  ur t on t  t   n    us   w t out  tt nu t n  t   

   pt t ons to    2max. 

 

Our present analysis does not provide an explanation for t   poss  ly n   t v       t o  r  u  n  

t   m x m l num  r o  spr nt r p t t ons on  mprov m nts  n    2m x   ut     s uss on o  

poss  l  m    n sms  s w rr nt        m  n l m t n     tor o     2max is generally assumed to 

be maximal cardiac output, possibly through increased blood volume (7, 53). To date no studies 

have examined the effect of SIT on blood volume, but there is evidence in favour (17, 71) and 

against (35) increases in blood volume in response to HIIT. Similarly, there is evidence in favour 

(3) and against (45)  n r  s   m x m l   r     output w t       w t  t   l tt r   n  n  

su   st n  t  t t      pt t ons to      or    2max may be peripheral in origin. Indeed, several 

 ut ors   v  propos   t  t  mprov m nts  n    2max with SIT are caused by improved skeletal 

muscle oxygen extraction due to increased mitochondrial density (22, 35, 55, 62, 74). Although 

it remains un l  r w  t  r t    mprov m nt  n    2max with SIT is due to central or peripheral 

adaptations, we propose that both increased blood volume and increased mitochondrial density 

could plausibly be explained by the rapid glycogen depletion associated with supramaximal 

exercise (49). Firstly, maximal rates of glycogenolysis in the initial 15 seconds of a 

supramaximal sprint (56) are associated with the accumulation of metabolic derivatives, resulting 

in a hypertonic intramyocellular environment, influx of water, and a transient ~15-20% drop in 

plasma volume within a timespan of just a few minutes (49). This severe disturbance of 

circulatory homeostasis could be a stimulus for the body to increase blood volume in response to 
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repeated SIT sessions. Secondly, glycogenolysis is associated with the release and activation of 

glycogen-bound 5' AMP-activated protein kinase (AMPK) (57), which through downstream 

signalling pathways involving peroxisome proliferator-activated receptor gamma coactivator 1-

 lp   (   1α    propos   m st r r  ul tor o    ro       pt t ons)   oul       m    n sm 

leading to increased mitochondrial density (29). Glycogen breakdown during repeated 

supramaximal sprints has been shown to be completely attenuated by the time of the third sprint 

(56), and it is therefore plausible, for both of these speculated mechanisms, that perform n   ust 

two r p  t   supr m x m l spr nts  s su      nt to ‘s tur t ’ (     m x m lly   t v t ) t   

   pt v  r spons    n ot  r wor s       t  r  n r  s    loo  volum  or m to  on r  l   ns ty 

un  rp ns t      n  s  n    2max with SIT, and if rapid glycogen breakdown regulates those 

adaptations, then no additional improvements would be expected if more than 2-3 sprints are 

performed in a training session.  

 

Apart from this hypothesis it is also possible that increasing the number of sprint repetitions will 

r sult  n ‘p   n ’ str t    s t  t      t t   ‘ ll-out’ n tur  o  t   spr nts (     r  u t on o  p  k 

and mean power output in initial sprints), or that accumulated fatigue may reduce the 

effectiveness of later sprints. Furthermore, the fact that increasin  t   num  r o  spr nt 

r p t t ons  o s not  n  n   t    mprov m nt  n    2max with SIT provides strong evidence 

against a role for the magnitude of the acute effects of supramaximal sprints on oxygen transfer, 

energy turnover, or total energy use, as p rt o  t   st mulus  or  mprov n     2max with SIT, 

because for each of these factors the stimulus should be greater with more sprint repetitions. 

A number of limitations to the present meta-analysis should be noted. Firstly, in order to be of 

use as a practical intervention for preventing and/or treating inactivity-related chronic disease, 

SIT interventions should also be effective at improving for example insulin sensitivity and 

glycaemic control, blood pressure, blood lipid profile, and body composition. Therefore, one 
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l m t t on  s t  t only    2max was included as an outcome measure in the present analysis. 

Whereas insufficient data for a meta-analysis is available for the effects of SIT on blood pressure 

(14, 23, 73), blood lipid profile (4, 73), and body composition (66, 73), the effect of SIT on 

insulin sensitivity and glycaemic control has received more attention (4, 22, 23, 48, 50, 58, 73). 

However, the methods used to assess the effects of SIT on these parameters have varied, with 

different studies using oral glucose tolerance tests (4, 48, 50, 73), intravenous glucose tolerance 

tests (22), euglycemic hyperinsulinemic clamps (58), or continuous glucose monitoring (23). 

This means that a meta-analysis of the effects of the number of sprint repetitions in a SIT 

protocol on insulin sensitivity and glycaemic control is also currently not feasible. Nonetheless, 

the improvements in insulin sensitivity and glycaemic control observed to date with SIT 

protocols incorporating two (48) or three sprints (22, 23) are encouraging.  

 

Secondly, due to the number of available SIT studies the power of our meta-analysis is 

insufficient to conclude with certainty that the modifying effect of the number of sprint 

repetitions is n   t v         t r m  ns poss  l  t  t  n r  l ty p r orm n  mor  spr nts w ll r sult 

 n t   s m   mprov m nts  n    2max (a chance of approximately 1 in 3). However, this is not of 

m  or  mport n   to t   s  n     n   o  our   n  n s   v n ‘no      t’ o  t   num  r o  spr nt 

repetitions would lead to the logical conclusion that performing SIT protocols with more than 2 

or 3 sprints is unnecessary for  mprov n     2max in sedentary individuals. Based on the present 

analysis, the chance that in reality the effect of performing more sprints is positive was 

calculated as 0.0%.  

 

A final limitation of our meta-analysis is that only SIT interventions using all-out intensities 

were included. Optimising time-efficient interventions aimed at improving general health 

requires consideration of various parameters, and exercise intensity is undoubtedly one of the 
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key parameters affecting the effectiveness of HIIT and SIT protocols. However, due to the large 

range of intensities used in SIT and HIIT protocols (~80%-350% of    2max) we felt it was 

 mport nt to  tt mpt to ‘ ontrol’  or t  s v r   l  in the present analysis by including only studies 

t  t us   ‘ ll-out’ cycling exercise. Nonetheless, there is a clear need for studies examining the 

effect of the number of sprint repetitions at lower exercise intensities, e.g. in HIIT studies.  

In conclusion, in the present meta-analysis we demonstrate that SIT is possibly mor       t v   t 

 mprov n     2max if fewer sprint repetitions are performed in a training session. Considering 

the proclaimed aim of SIT to provide a time-efficient alternative / adjunct to high-volume 

moderate-intensity aerobic exercise, this finding has important implications for the design of 

practical SIT interventions. We put forward that SIT research should move away from further 

characterising the commonly used 4-7 x 30-s Wingate protocol, and towards establishing 

acceptable and effective protocols. This will require more studies to examine the modifying 

effects of a range of training parameters (including number of sprint repetitions, sprint duration, 

sprint intensity, and training frequency) on adaptations to key health markers, as well as exercise 

enjoyment and acceptability, perceived exertion, and the potential to cause negative affective 

responses.   
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Figure 1:  Flow diagram of the study selection process 

 

Figure 2: Funnel plot of model residuals versus their corresponding standard errors, with 90% 

confidence interval region 

 

Figure 3: Main effects of SIT on    2max 

 

Figure 4: Modifying effects o  num  r o  spr nt r p t t ons ( )    s l n     2m x ( )   n      ( ) 

on t        t o      on    2max. Data-points represent individual trials included in the meta-analysis, 

and the size of the data-point is proportional to study weighting. Solid and dotted lines represent the 

effect of the moderator ± 90% confidence limits respectively.  
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Table 1: Training effects, training protocol parameters, and participant characteristics for the studies included in the meta

Reference Study 
design 

SIT-group 
sample 
size (n) 

Proportion 
of men 

Mean baseline 
  O2max  

(mL·kg
-1

·min
-1

) 

Mean 
age (y) 

Mean 
BMI 

(kg·m
-2

) 

Training 
duration 
(weeks) 

Total 
training 

sessions 

Sprint 
duration 

(s) 

Recovery 
duration 

(s) 

Metcalfe (47) C 11 0.45 34.2 25.0 23.5 6 18 20 200 
Metcalfe (48) NC 34 0.50 35.0 34.1 24.6 6 18 20 200 
Allemeier (1) C 11 1.00 48.7 22.7 24.8 6 15 30 1200 
Gillen (21) NC 14 0.50 29.5 30.0  - 6 18 20 120 
Ijichi (33) C 10 1.00 47.7 20.4 21.0 4 20 30 600 
Gillen (20) C 9 1.00 32.0 27.0 27.0 12 36 20 120 
Harris (27) C 6 0.00 35.0 22.0 23.6 4 12 30 270 
Bayati (7) C 8 1.00 44.6 25.0 23.7 4 12 30 240 
Barnett (5) C 8 1.00 47.6 20.4  - 8 24 30 180 
Burgomaster (10) C 10 0.50 41.0 23.6 23.6 6 18 30 270 
Hazell (28) C 13 0.81 47.0 24.0 24.7 2 6 30 240 
Hazell (28) C 13 0.81 47.0 24.0 24.7 2 6 10 240 
Hazell (28) C 13 0.81 47.0 24.0 24.7 2 6 10 120 
Whyte (68) NC 10 1.00 32.8 32.1 30.3 2 6 30 270 
Astorino (2) C 20 0.55 43.6 25.0 24.1 2 6 30 300 
Shepperd (56) C 8 1.00 41.9 22.0 24.8 6 18 30 270 
Larsen (39) NC 8 1.00 25.8 27.0 26.8 2 6 30 240 
Ijichi (33) C 10 1.00 46.8 21.3 22.2 4 10 30 600 
Kiviniemi (37) C 13 1.00 34.7 48.0 25.6 2 6 30 240 
McGarr (45) C 8 0.75 47.2 25.0 -  2 8 30 240 
Nalcakan (52) C 8 1.00 40.2 21.7 25.5 7 21 30 270 
Zelt (69) C 11 1.00 48.6 23.0 25.0 4 12 30 270 
Zelt (69) C 12 1.00 43.9 22.0 26.0 4 12 15 285 
Cochran (12) C 12 1.00 50.6 22.0 25.7 6 18 30 240 
Burgomaster (11) C 8 0.75 44.6 22.0 25.6 2 6 30 240 
Burgomaster (9) C 8 1.00 48.9 21.0 23.8 2 6 30 240 
Bailey (4) C 8 0.63 42.0 21.0 23.7 2 6 30 240 
Trilk (63) C 14 0.00 21.6 30.1 35.7 4 12 30 240 
Richardson (54) C 9 0.56 40.0 21.0 23.8 2 6 30 240 
Katz (34) NC 8 1.00 51.8 24.2  - 8 32 30 240 
Scalzo (55) NC 21 0.52 41.5 22.5 22.4 3 9 30 240 
Stathis (61) NC 8 0.75 49.6 22.1 -  7 21 30 180 
McKenna (46) NC 8 1.00 47.1 20.9 23.7 7 21 30 180 
MacDougall (43) NC 12 1.00 50.8 22.7 24.0 7 21 30 180 
Harmer (25) NC 7 1.00 49.8 22.0 23.5 7 21 30 180 
Harmer (26) C 7 0.71 43.7 24.0 23.8 7 21 30 180 
Skleryk (57) C 8 1.00 29.7 40.2 32.2 2 6 10 80 
Hellsten-Westing 
(29) NC 11 1.00 53.0 23.6  - 6 18 10 50 

Abbreviations:  BM - body mass, BMI - body mass index, C - controlled, NC - not controlled, SE - standard error, SIT - sprint interval trainingACCEPTED
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Table 2                          2max and modifying effects  

 Effect on    2max  

(mean %, ± 90% CL) 
Inference 

Main effect: 7.8 ± 4.0 Likely large increase 

Modifying effects:   

2 more sprint repetitions*  -1.2 ± 0.8 Possibly small decrease 

3 more training sessions* 0.7 ± 0.4 Likely trivial change 

10 s longer sprint duration* 0.6 ± 1.3 Possibly trivial change  

60 s longer recovery interval duration* 0.2 ± 0.3 Most likely trivial change 

3% of BM greater sprint resistance 1.0 ± 2.3 Unclear 

10 mL·kg-1·min-1 lower baseline    2max 1.5 ± 1.9 Possibly small increase 

7 years higher age -1.1 ± 1.2 Possibly small decrease 

6.2 kg·m-2 higher BMI 0.8 ± 2.7 Unclear 

Female sex -0.2 ± 3.5 Unclear 

Uncontrolled study -0.9 ± 2.1 Unclear 

The reference condition is an intervention using 14 SIT sessions and a maximum of 7 repeated 30-s 

sprints with 240 s recovery. Effects of SIT are presented as the % change compared to pre-training. 

*, indicates a practically relevant value was chosen to evaluate the effect magnitude; other numeric 

modifiers were evaluated as a 2 x SD change in the parameter. Abbreviations: BMI: body mass index, 

CL: confidence limits, SIT: sprint interval training,    2max: maximal aerobic capacity. 
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